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CONSTRAINT SATISFACTION PROBLEM (CSP)

Definition. For a finite relational structure B = (B;R) we define
CSP(B)={A|A—B}.
o CSP( A) is the class of three-colorable (directed) graphs.

) CSP(I) is the class of (directed) bipartite graphs.

e The membership problem for CSP(B) is always decidable in nondeterministic

polynomial time (NP).

Dichotomy Conjecture (Veder, Vardi, 1999). For every finite structure B the
membership problem for CSP(B) is either in P or NP-complete.

Theorem. The dichotomy conjecture holds if
e |B| = 2 (Schaefer, 1978),
e B is an undirected graph (Hell, Nesettil, 1990),
e |B| =3 (Bulatov, 2006).



CSP REDUCTIONS

e If B— C — B, then CSP(B) = CSP(C).
e We may assume that B is a core, i.e., every endomorphism is an automorphism.
e We may assume that every unary constant relation g, = {b} C B is in B.

e We may assume that B is a directed graph with constants.

Definition. p: B" — B is a polymorphism of B if every relation of B is closed

under p. Example:
— if <331,y1>, R <aj’n7 yn> € R then <p(£l?1, s 7$n)7p(y17 s 7yn)> S R7
— for g, this means that p(b,...,b) = b.

Pol(B) ={p: B" — B | p is a polymorphism of B }.

e Pol(B) is a clone; it is idempotent if B has the unary constant relations.

e If Pol(B) C Pol(C), then CSP(C) is polynomial time reducible to CSP(B).



NICE POLYMORPHISMS

Theorem. CSP(B) is in P if Pol(B) contains one of the following:
e a semilattice operation (Jevons et. al.)

® a near-unanimity operation
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p(y,x,...,x) =~ p(x,y,x,...,1)
e a totally symmetric idempotent operation (Dalmau, Pearson, 1999),
e o Mal’tsev operation: p(x,y,y) ~ p(y,y,x) = x (Bulatov, 2002; Dalmau, 2004),
e Generalized majority-minority operation (Dalmau, 2005),
o 2-semilattices (and conservative algebras) (Bulatov, 2006),
e Fdge operations (Idziak, Markovi¢, McKenzie, Valeriote, Willard, 2007),
e CD(3) Jonsson operations (Kiss, Valeriote, 2007),

e CD(}) Jonsson operations (Carvalho, Dalmau, Markovié¢, Maroti).



WEAK NEAR-UNANIMITY

Theorem (Larose, Zadori, 2006). If B is a core and Pol(B) does not contain a
Taylor operation then CSP(B) is NP-complete.

Theorem (McKenzie, Maréti, 2006). For a locally finite variety V the TFAE:
(1) V omits type 1,
(2) V has a Taylor term,

(3) V has a weak near-unanimity operation:

-~ plr,...,z,y) and p(x,...,x)~ .

Q
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p(y,x,...,x)

Corollary. To prove the dichotomy conjecture it 1s enough to show that if a core

directed graph B has a weak near-unanimity polymorphism then CSP(B) is in P.

Theorem (Barto, Kozik, Niven, 2007). The dichotomy conjecture holds for
directed graphs without sources and sinks. If B has a weak near-unanimaity

polymorphism, then the core of B is a disjoint union of circles.



LLOCAL CONSISTENCY: (7J,k)-ALGORITHM

Definition. Let 1 < j < k be integers, and A, B be similar relational structures.

Initial step: Put H® = U H , where H'Y = Hom(A|k,B).

KCA,
K<k

[teration step: Let f: A — B be a partial map, J C K, |J| < j and |K| < k. If one
of the following implications does not hold

restriction: f & Hﬁ? — fls € H(j),
extension: f € Hf,i) —> dg € Hﬁ?, 9ldom(s) = f

then put HU+) =HO\ {f}.

Output: The output of the (j, k)-consistency algorithm is H) if the iteration step

cannot be applied.

Definition. A (7, k)-strategy is a set H of partial homomorphisms from A to B

closed under restrictions and extensions.

e The output H of the (j, k)-algorithm is always a (j, k)-strategy.



(1,2)-ALCGORITHM EXAMPLE



BOUNDED WIDTH

e The (7, k)-algorithm runs in polynomial time (in the size of A).
e The output is independent of the choices made.

o If H =0, then A 4 B.

Definition. The relational structure B has

(1) width (j,k) if CSP(B) = { A | IH # 0 (4, k)-strategy for A and B },
2)

(3) “IDB” width j if it has width (j, k) for some integer k,

(4)

Lemma. If B has bounded width, then CSP(B) is in P, but not vice verse.
Theorem (Feder, Vardi, 1998). TFAE:

(1) B has width (j,k),

total variable width £ if it has width (k — 1, k),

bounded width if it has width (j, k) for some j and k.

(2) The complement of CSP(B) is definable in (7, k)-Datalog,
(3) B has (j, k)-tree duality.



BOUNDED WIDTH EXAMPLES

Theorem (Feder, Vardi; Dalmau, Pearson). A finite relational structure B has

width 1 if and only if it has a totally symmetric idempotent operation.

Theorem (Feder, Vardi). If B has a j + 1-ary near-unanimity polymorphism, then
B has width j.

Example The structure B = ({0,1}; 0,0), o = {{0,0),(0,1),(1,0)},
= {(0,1),(1,0),(0,0)} has width (2,3) but does not have width 1.

e Pol(B) is generated by the ternary near-unanimity operation.

1),
(B)
e Pol(B) contains no essentially binary operation.
e Pol(B) does not have a totally symmetric operation p because otherwise
) =

q(x,y) =p(z,...,z,y) would be a binary commutative operation.

Theorem (Larose, Zadori). If B has bounded width, then the variety generated by
the algebra B = (B;Pol(B)) omits types 1 and 2, i.e., it is congruence

meet-semidistributive.



MAIN RESULT

Theorem (Jonsson, 1967). An algebra B lies in a congruence distributive variety
off there exists an integer n > 0 and ternary terms pg, ..., p, that satisfy the

following identities:

po(x,y,2) ~ x,

pn(T,y, 2) = 2,

pi(z,y,x) = o for all 7,
pi(x,x,y) =~ piv1(z,z,y) for all even 1,
pi(T,y,Y) = piy1(2,Y,y) for all odd 1.

Theorem. If B has polymorphisms pg,...,ps satisfying the above identities then B
has width (k — 1,k) where k is the mazimum of 3 and the largest of the arities of

the relations.
e CD(2) = majority operation

e CD(3): Kiss and Valeriote proved slightly more: for them & depends only on
the size of B, and not on the arities of relations (relational width).



OUTLINE OF PROOF

Put B = (B;p1,p2,p3). The variety V = HSP(B) satisfies the identities:

x = p1(T,,Y), pi(z,y,r) ~ z,
p1(z,y,y) = p2(2, Y, Y), p2(z,y,7) =~ x,
p2(z,x,y) = p3(z,x,y), p3(z,y,r) =~ z,
p3(z,y,y) = y.

e Assume that B is a directed graph with constants, so k£ = 3.

e Take a nonempty (2, 3)-strategy H for A and B.

e We need to find a map f: A — B such that f|r, 1 € Hyy .y forall z,y € A
o If H is trivial, i.e. |H,| =1 for all z € A, then H uniquely determines f.

e If H is not trivial, then we construct a proper substrategy H' C H.

e In finitely many steps the algorithm must stop (we do not need polynomial

time here)



REDUCTION TO IDEAL FREE ALGEBRAS

Definition. Let C <D € V.
e C is a left-ideal of D, if ps(d,c,c) € C for all c € C' and d € D.
e C is a right-ideal of D, if ps(c,c,d) € C for all c € C and d € D.

Lemma (Kiss, Valeriote). If H is a nonempty (k — 1, k)-strategy, then it has a
nonempty (k — 1, k)-substrategy H' such that the algebras H., € V have no proper
left or right-ideals.

Proof. Assume that C < 'H, is a proper left-ideal for some x € A.

H' = {f cH | Vy, z € dOHl(f) Elf, S H{m,y,z} f/|{y,z} — fl{y,z}a f/(ilj') = C}

to g € H

. . . . /
Easy cases: restriction and extension of f € 'H q (.2}

Y,%}
/

Interesting case: extension of f € H{{y,z} to g € H{y,zm}.
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REDUCTION TO CONGRUENCE CLASSES

Lemma. Let ‘H be a nontrivial (k — 1, k)-strategy. Then there exists a nonempty
set X C A and mazimal congruences 9, € Con(H,) for all x € X such that

(1) Hyy/ (Ve x0y) is the graph of an isomorphism 7,y : Hy /0s — H,, /0y for all
x,y € X of elements,

(2) ToyoTys="Ts. forallz,y,z € X,

(3) Hayy/(Pz x0) = (Hy/Vs) X Hy for any x € X andy € A\ X.

Key step of the proof:
e r € X, U=""H,/J, simple, has no proper ideal,
o yZ X, V="H, has no proper ideal,
e R="H,,/(J, x0) is a subdirect product of U and V,
e R is not the graph of a homomorphism of V onto U,
In this case R =U x V.



ENTERING THE RIGHT CLASS OF 9,

Lemma. For every x € X choose a congruence class C, of ¥, such that these

correspond to each other via the 15, isomorphism. Let H' be the set of all functions
f € H that satisfy the following conditions:

(1) f(x) € Cy for all x € X Ndom(f),
(2) f generates a minimal right-ideal in Hyom(s)-
Then H' is a (k — 1, k)-strategy.

Not hard: functions satisfying (2) are always form a strategy.
Key step of the proof:

e v € X, U="H,/J, simple, has no proper ideal,
® Y,z ¢X7 \% :Hy,za
e R=H,,./(¥, x0x0) is a subdirect product of U and V,

e f € R,and f generates a minimal right-ideal S < R,
In this case S = U x S|, ..



OPEN PROBLEMS

Is it true that every relational structure B with CD(5) polymorphisms have
bounded width?

Is it true that every relational structure B with CD(4) polymorphisms must
have width (2, k) for some k?

Is it true that every relational structure B with a near-unanimity

polymorphism (of any arity) must have width (2, k) for some k7
Is it true that if B has bounded width then it has width (2, k) for some k?

Classify subdirect products R < U x V of algebras in a congruence distributive
variety where U is simple and R is not the graph of a homomorphism of V
onto U.

What is the smallest directed graph that has a weak near-unanimity
polymorphism but does not have bounded width?

Is there a directed graph that has bounded width but does not have a
near-unanimity or totally symmetric idempotent polymorphism?



BOUNDED WIDTH AND ALGEBRAS

Definition. A finite algebra B has bounded width if for every finite set
R C Inv(B) of relations there exist j, k such that B = (B;R) has width (j, k).

Theorem (Larose, Zadori, 2006). Fvery finite algebra in the variety generated by a
bounded width algebra has bounded width.

Definition. A finite algebra B has relational width j if for every finite set
R C Inv(B) of relations B = (B;R) has width (j, k) where k is the maximum of
7 + 1 and the largest of the arities of the relations.

Definition. A finite algebra B = (B;F) has bounded relational width if it has
relational width j for some integer j.

e Is it true that if B has bounded width then it has bounded relational width?
e Is it true that if B, C € V have bounded relational width, then so does B x C?

e Is it true that if B has width (2, k) then it has width (2, k") where k' is the

maximum of 3 and the largest of the arities of the relations.



